## GCF 5G MENA Workshop November 28, 2018

# 5G New Radio

# Motivation, Design, Deployment Options & Challenges



# New Radio to Drive Innovation

**\* 8.9 bn** mobile subscription in 2023 **\* LTE** will continue to have 60% of the share **\* 5G** will account for 12% of the share



- Improved Performance, scalability and efficiency
- New & Diverse Services on the rise, driving the growth

### **RADIO CAPABILITY**

- Diverse scalability for eMBB, IOT, Reliability and Latency
- Better usage of Spectrum
- Impact to Devices



From Ericsson Mobility Report, and MediaTek Research. \*WW monthly/active smartphone

## Data Experience



### Augmented Reality (AR), Mixed Reality (MR) & Virtual Reality (VR)

#### 5G NR Value Add:

- 200 Mbps to 1 Gbps streaming bandwidth
- Reliable sub-20 msec motion-to-photon latency VR

### Mobile Media: 360°, 4K/8K Live Entertainment

~73% of mobile data traffic from video/streaming services in 2023

#### 5G NR Value Add:

- 8K: 100-500 Mbps streaming bandwidth, sub-10 msec latency
- 360°: 400-600 Mbps streaming BW, sub-10 msec latency

#### **Game Streaming Services**

#### 5G NR Value Add:

- 200-500 Mbps streaming bandwidth
- Sub-10 msec latency for best user experience

## **Next level of Industry Revolution**

# Infotainment Service for Public and Private Transportation

### **Autonomous Driving**

#### 5G NR Value Add:

- Extreme Capacity up to 40 Gbps DL
  - E.g. 500 people per train
- Low Latency for VR/AR

#### 5G NR Value Add:

- Ultra-low Latency with very high reliability
  - For safety and security
- 100 Mbps/vehicle, high capacity for fleet (10+ Gbps)

### **Fixed Wireless Access (FWA)**

#### 5G NR Value Add:

- Fiber+ like speed (10-40 Gbps) to multiple households
  - Within one site location

## Next level of Personal Lifestyle

### **Tele-education, Tele-office Services**

e.g. thin/zero client for mobile devices

#### 5G NR Value Add:

- Minimum of 400-500 Mbps
- Up to 1 Gbps burst performance

### **Tele-health services**

e.g. remote surgeries

#### 5G NR Value Add:

- Ultra Reliable throughput
- Strict low e2e latencies (1-10 msec) with low jitter (1μs)



- Extreme Data Speed
- Low Latency with High Reliability
- Massive Capacity for all Use Cases
- Diverse QoS & Consistent User Experience

# **Technology Evolution is for Users & Services**

#### **Multiple Radios Clustered Network One Efficient Network** Voice + Mobile Broadband (MBB) IP Voice Services + MBB + Some Things eMBB + More Things + Moving Nodes + Slicing + Verticals **NETWORK EVOLUTION** Fred Fred **10X-100X SMART** Changing MBB Low Latency App Time Frame Structure **4G** ITF with 5G Unified Air **3G 2**G **Big Chunks of** Interface suitable IOT suitable **Frequencies** for Data for Voice Current Traffic / Revenue LONG TAIL OPPORTUNITIES Vehicular Q **Telematics** ΙοΤ **Massive IoT** AR/VR **Reliable Communication Use Cases**

6

## **3GPP Standard for 5G NR Evolution**



# Spectrum and Radio **5G NR TECHNICAL EVOLUTIONS**

## **Global Race Towards 5G**



## Amount of mid-band [1GHz-6GHz] confirmed for 5G assignment by 2022



5G Deployment Influenced by Available Spectrum

- High-bands above 24 GHz (mmWave) ightarrow FR2
- Mid-bands 1 GHz to 6 GHz (sub-6)  $\rightarrow$  FR1
- Low-bands below 1 GHz (sub-6) → FR1

# Spectrum Status, NR

| •                | Sub-6GHz    |                | Above-6GHz               |              |                              |                          |
|------------------|-------------|----------------|--------------------------|--------------|------------------------------|--------------------------|
|                  | <1 GHz      | 1-3 GHz        | 3-5 GHz                  | 6-24 GHz     | 24-30 GHz                    | 30-40 GHz                |
| China            | Band 8      | Band 1, 3, 41  | 3.3-3.6GHz<br>4.8-5.0GHz |              | 26GHz                        | 37-42.5GHz               |
| Japan            |             |                | 3.6-4.2GHz<br>4.4-4.9GHz |              | 27.5-29.5GHz                 |                          |
| S. Korea         |             | Band 1, 3      |                          |              | 27.5-28.5GHz<br>26.5-29.5GHz |                          |
| USA              | Band 71     | Band 66, 41    |                          |              | 27.5-28.35GHz                | 37-37.6GHz<br>37.6-40GHz |
| Europe           | Band 20, 28 |                | 3.4-3.8GHz               | 5.925-8.5GHz | 24.25-27.5GHz                | 31.8-33.4GHz             |
| Others (MEA/AUS) |             | 1.427-1.518GHz | 3.3-3.8GHz               |              | 24.25-29.5GHz                |                          |



# 5G Early Deployment is Possible due to Available Spectrum

- Table is based on Telecom Operators Band Interest Proposals for NR in 3GPP – RAN4
- How to introduce legacy LTE spectrum to NR bands is more about network migration paths

# **5G NR Flexible Spectrum Access**

## UL SHARING (SUL) FOR COVERAGE PURPOSE

**Coverage Extension** DL: 3.5GHz **UL: 900MH** Sharing by TDM or FDM Bands

## DL SHARING FOR NR SPECTRUM EXTENSION

3.5GHz Coverage

DL: 3.5GHz

11 · 3 5G

- Basic idea is NR signals are transmitted over un-used LTE resource
- Useful for operators who consider LTE spectrum migration ex., USA

https://cdn-www.mediatek.com/page/MediaTek-Read Whitepaper 5G-NR-White-Paper-PDF5GNRWP.pdf







## NON-STANDALONE



## **STANDALONE**





| Option  | Туре | Description        | <b>3GPP Completion</b> | Comments                                                |
|---------|------|--------------------|------------------------|---------------------------------------------------------|
| 2       | SA   | SA to NGC          | Sep 2018               | Standalone – China market interest                      |
| 3/3a/3x | NSA  | EPC + LTE Assisted | Mar 2018               | 3x is current main stream                               |
| 4/4a    | NSA  | 5GC + NR Assisted  | Mar 2019               | Late-drop ASN.1 freeze in 1Q19                          |
| 5       | SA   | LTE + 5GC          | Sep 2018*              | Could be in late-drop if can't be completed in Sep 2018 |
| 7/7a/7x | NSA  | 5GC+ LTE Assisted  | Mar 2019               | Late-drop ASN.1 freeze in 1Q19                          |

\*In case Option 5 is not completed by September ASN.1 drop, it will be part of the late drop

## Deployment Options Applicability – MediaTek view



## **Possible Three of Major Deployment Scenarios**



# **5G Voice Solutions**

| EPS Fallback                                                                                                                                                                                                     | 5G VoNR                                                                                                                                                                                                                                                 | 5GS Fallback to E-UTRA [5G VoLTE]                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Single Radio operation</li> <li>Handover to EPS when making call</li> <li>Requires 5GC/EPC interworking</li> <li>Voice performance = legacy VoLTE</li> <li>Preferred approach for UE vendors</li> </ul> | <ul> <li>IMS Voice call possible in NR cell</li> <li>Intra 5GS Inter RAT handover possible (5G VoLTE)</li> <li>SRVCC to 4G VoLTE possible</li> <li>SRVCC to GSM/UMTS not supported in Rel-15</li> <li>SRVCC to UMTS CS under study in Rel-16</li> </ul> | <ul> <li>Intra-5GS handover to E-UTRA when<br/>making call</li> <li>Only available with E-UTRA connected<br/>to 5GC (Options 5, 7)</li> <li>SRVCC to 4G VoLTE possible</li> <li>SRVCC to GSM/UMTS not supported in<br/>Rel-15</li> <li>SRVCC to 3G CS under study in Rel-16</li> </ul> |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |







# **5G NR Key Components**

| Waveform             | Target: compatibility with MIMO, Spectral efficiency, Low Peak to Average<br>Power ratio (PAPR), high time localization to support TDD systems and<br>URLLC use cases, Acceptable complexity and low out of band emissions                                                                                    |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel BW           | Target: compared to LTE, 5GNR is designed to have higher Bandwidth efficiency, reaching 99% → compared to 90% in LTE, where 100 RB cover only 18 MHz in a 20 MHz Bandwidth carrier                                                                                                                            |
| Numerologies         | Target: scalable and flexible physical layer design. Divide a wide OFDM channel into orthogonal narrow subcarriers. E.g. the lower the Sub carrier spacing the larger the cell size is (suitable for the lower frequency). Larger sub carrier spacing for better latency since the symbol duration is shorter |
| Modulation &<br>MIMO | Target: improve throughput/capacity in different radio conditions                                                                                                                                                                                                                                             |
| Channel Coding       | Target: enhance data and control channel performance with reasonable<br>complexity<br><i>"MediaTek was among the first to perform</i><br><i>interoperability testing on Polar Code with Huawei,</i><br><i>for network capacity boost &amp; low design complexity."</i>                                        |

| LTE                                                                                                                            | Rel-15 NR                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>DL: CP-OFDM</li> <li>UL: DFT-S-OFDM</li> <li>&lt; 6 GHz Freq Range</li> </ul>                                         | <ul> <li>DL: CP-OFDM</li> <li>UL: CP-OFDM, DFT-S-OFDM</li> <li>Up to 52.6 GHz Freq Range</li> </ul>                                                                       |
| <ul> <li>20 MHz</li> <li>CA: Up to 32 carriers;<br/>DuCo: Up to 64 carriers</li> <li>HARQ RTT: ≥ 10 ms</li> </ul>              | <ul> <li>Sub6: 100MHz</li> <li>Above6: 400MHz</li> <li>CA: Up to 16 carriers;<br/>DuCo: up to 32 carriers</li> <li>HARQ RTT: 0.25-16 ms</li> </ul>                        |
| <ul> <li>SCS: 15 KHz</li> <li>CP: Normal CP; Extended CP</li> <li>Max # SC: 1200</li> <li>Slot size: 2/7/14 symbols</li> </ul> | <ul> <li>SCS: 15/30/60/120/240 KHz</li> <li>CP: Normal CP for all SCS,<br/>Extended CP for 60KHzs SCS</li> <li>Max # SC: 3300</li> <li>Slot size: 1-14 symbols</li> </ul> |
| <ul> <li>Up to 256-QAM</li> <li>Beamforming, open/closed loop</li> </ul>                                                       | <ul> <li>Up to 256-QAM (1024-<br/>QAM)</li> <li>Beamforming, open/closed<br/>loop</li> </ul>                                                                              |
| • Turbo Code & RM Block<br>Code                                                                                                | <ul> <li>Polar Code (control) &amp; LDPC<br/>(data)</li> </ul>                                                                                                            |

# Chipset and Devices 5G DEVICE EVOLUTIONS & MEDIATEK READINESS

## **5G Devices Outlook**

"MediaTek has been heavily investing in the development of 5G and is committed to accelerating its adoption, by bringing the technology to all tiers, including the midtier market from early launch."

COLATEX

**M70** 

**5GNR Modem** 



Release-15 Ready in 2019 SA/NSA capable

5 Gbps Speed Diverse bands 5G NR Features

From Ericsson Mobility Report, 2018. The figure shows device availability for Non-Standalone 5G NR, with the exception of the 3.5GHz band, where Standalone is also shown

## eMBB Device Segments – MediaTek view by 2020

|        |                  |                                                      | Device Type                                  | Technologies                                       | DL Peak Data Rate |
|--------|------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------|
|        | mmWave Centric   | High Cost, Small<br>Volume                           | CPE, tablet<br>Smartphone (?)                | LTE + [NR sub-6] +<br>NR mmW (incl. SA<br>and NSA) | 6-8 Gbps          |
| И.     | Sub-6GHz Centric | Medium Cost, Large<br>Volume                         | CPE, tablet,<br>Smartphone, VR/AR<br>helmat, | LTE + NR sub-6<br>(incl. SA and NSA)               | 2.5-5 Gbps        |
| Volume | Baseline LTE     | Cost Optimized,<br>Power Optimized<br>LTE Generation | Tablet, Smartphone                           | LTE                                                | ~1 Gbps           |

# **Enabling UE Power Scaling & Reaching Competitive VoNR Power**



# Standalone VoNR power requires carefully designed UE configurations

Single Carrier

BW Part – UE bandwidth 2x2 MIMO for Rx reduction Cross-slot scheduling Aggressive Rx/Tx duty cycle reduction

- Small cells Power dominated by Rx in baseband and transceiver
- Macro cells Higher Tx power adds around 1.5 Watt for 21 dBm average

## MediaTek Active Contributions in 5G Commercialization

### **Standard Bodies**



- **3GPP** 3GPP RAN2 Vice Chair
  - 3GPP 5G NR Spec. Rapporteur
  - ~20 delegates, ~100+ Tdocs for each WG meeting
  - Major contributors of key 5G features (e.g. Polar code, BWP, ...)
- GTI 5G Sub-6GHz Project Lead
  - Lead GTI publish key 5G white papers:
  - Received "Honorary Award of GTI Awards 2018"
- **Other** TAICS: Chair of Technical Committee
  - CCSA, IMT2020 PG, 5GMF, GSMA

### **Chipset Announcement**



## Helio M70

- MediaTek Modem for 5G, ready in 2019
- 3GPP Rel-15 capable
- 5 Gbps data rate
- NSA/SA support
- Support major carrier features

### Partnerships



- MediaTek and China Mobile launch a joint R&D project to develop 5G Terminals for pre-commercial launch in 2019
- 5G terminal form factors, technical solutions, testing and verification, and product research and development
- Timing Accelerate the maturity of 5G chips and end devices for 2018, preliminary rollout in 2019, and the commercial rollout target for 2020

## MediaTek Prototypes Development

## Sub-6GHz Prototype





MediaTek and Huawei achieved an impressive peak performance of 8.5Gbps with 5Gbps sustained, using just 200MHz of bandwidth and 8x8 MIMO in the 3.5GHz range during recentlycompleted 5G NR Interoperability Development Testing (IODT)

- World's 1st IODT of UE with 8 phone-integrated antenna
- World's 1st IODT of Polar code Compliance with 3GPP NR standard

### mmWave Beam-Tracking

| 5G . | 28 GHz mmWave Technology |
|------|--------------------------|
|      | SG degrade federation    |

Beam tracking is key for mmWave systems to align gNB beam and UE beam

- Benefit at system side
  - In general, number of gNB beams is huge (several tens or hundreds of beams)
  - Hierarchy concept can save beam tracking time and hence improve system capacity
  - Benefit at UE side
    - No need to waste too much time on beam alignment
    - Reduce power consumption

### Next-Gen Multiple Access

| 5G NR Enhancement |  |  |
|-------------------|--|--|
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |

- DOCOMO Non-Orthogonal Multiple Access and MediaTek Multi-User Interference Cancellation were used on the same compact test chipset, an experiment that verified the spectral efficiency improvement has potential for 5G standardization
  - R&D ~2.3X spectral efficiency improvement in field tests
    - joint field trial confirms 10%~40% cell capacity gain at 50% of test locations with up to 137.5% gain in some particular location



# ΜΕΟΙΛΤΕΚ

